Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization

نویسندگان

چکیده

Abstract We consider the problem of constructing a reduced-rank regression model whose coefficient parameter is represented as singular value decomposition with sparse vectors. The traditional estimation procedure for often fails when true rank high. To overcome this issue, we develop an algorithm and variable selection via regularization manifold optimization, which enables us to obtain accurate even if Using regularization, can also select optimal rank. conduct Monte Carlo experiments real data analysis illustrate effectiveness our proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection in Multivariate Regression

The reduced-rank regression is an effective method to predict multiple response variables from the same set of predictor variables, because it can reduce the number of model parameters as well as take advantage of interrelations between the response variables and therefore improve predictive accuracy. We propose to add a new feature to the reduced-rank regression that allows selection of releva...

متن کامل

Scalable Reduced-rank and Sparse Regression

Reduced-rank regression, i.e., multi-task regression subject to a low-rank constraint, is an effective approach to reduce the number of observations required for estimation consistency. However, it is still possible for the estimated singular vectors to be inconsistent in high dimensions as the number of predictors go to infinity with a faster rate than the number of available observations. Spa...

متن کامل

Sparse Reduced Rank Regression With Nonconvex Regularization

In this paper, the estimation problem for sparse reduced rank regression (SRRR) model is considered. The SRRR model is widely used for dimension reduction and variable selection with applications in signal processing, econometrics, etc. The problem is formulated to minimize the least squares loss with a sparsity-inducing penalty considering an orthogonality constraint. Convex sparsity-inducing ...

متن کامل

Bayesian sparse reduced rank multivariate regression

Many modern statistical problems can be cast in the framework of multivariate regression, where the main task is to make statistical inference for a possibly sparse and low-rank coefficient matrix. The low-rank structure in the coefficient matrix is of intrinsic multivariate nature, which, when combined with sparsity, can further lift dimension reduction, conduct variable selection, and facilit...

متن کامل

Reduced rank regression for blocks of simultaneous equations

Reduced rank regression analysis provides maximum likelihood estimators of a matrix of regression coefficients of specified rank and of corresponding linear restrictions on such matrices. These estimators depend on the eigenvectors of an ‘‘effect’’ matrix in the metric of an error covariance matrix. In this paper it is shown that the maximum likelihood estimator of the restrictions can be appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics

سال: 2022

ISSN: ['0943-4062', '1613-9658']

DOI: https://doi.org/10.1007/s00180-022-01216-5